Home
Class 8
MATHS
Fractorise: 12(2x - 3y )^(2) -16 (3y -...

Fractorise:
`12(2x - 3y )^(2) -16 (3y - 2x )`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 12(2x - 3y)^2 - 16(3y - 2x) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 12(2x - 3y)^2 - 16(3y - 2x) \] Notice that \( 3y - 2x \) can be rewritten as \( -(2x - 3y) \). Thus, we can express the second term as: \[ 12(2x - 3y)^2 + 16(2x - 3y) \] ### Step 2: Factor out the common term Now, we can see that both terms contain \( (2x - 3y) \). Let’s factor \( (2x - 3y) \) out: \[ = (2x - 3y) \left[ 12(2x - 3y) + 16 \right] \] ### Step 3: Simplify the expression inside the brackets Next, we simplify the expression inside the brackets: \[ 12(2x - 3y) + 16 \] This can be simplified further: \[ = 12(2x - 3y) + 16 = 12(2x - 3y) + 16 \] ### Step 4: Factor out the constant from the bracket Now, we can factor out a common factor of 4 from the expression inside the brackets: \[ = 4 \left[ 3(2x - 3y) + 4 \right] \] Thus, we have: \[ = (2x - 3y) \left[ 4(3(2x - 3y) + 4) \right] \] ### Step 5: Write the final factorised form Putting it all together, we get: \[ = 4(2x - 3y)(3(2x - 3y) + 4) \] ### Final Answer: The factorised form of the expression is: \[ 4(2x - 3y)(3(2x - 3y) + 4) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorize: 12 (2x-3y) ^ (2) -16 (3y-2x)

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: 12x ^(2) - 27

Fractorise: x ^(3)-3x ^(2) + x-3

Fractorise: 4x ^(2) -9y^(2)

Fractorise: x (a -3) + y ( 3 -a)

Fractorise: (3x-4y)^(2) - 25z ^(2)

Factorize : ( 2x + 3y )^2 + 2 (2x + 3y ) ( x + y ) + ( x + y )^2

Fractorise: (x +y)(2x +5) - (x + y) (x +3)

Fractorise: 16 x^(5) - 144 x ^(3)