Home
Class 8
MATHS
Fractorise: (x +y)(2x +5) - (x + y) (x...

Fractorise:
`(x +y)(2x +5) - (x + y) (x +3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((x + y)(2x + 5) - (x + y)(x + 3)\), we can follow these steps: ### Step 1: Identify the common factor Notice that both terms in the expression share a common factor of \((x + y)\). ### Step 2: Factor out the common term We can factor out \((x + y)\) from both terms: \[ (x + y)((2x + 5) - (x + 3)) \] ### Step 3: Simplify the expression inside the parentheses Now, we simplify the expression inside the parentheses: \[ (2x + 5) - (x + 3) = 2x + 5 - x - 3 \] Combine like terms: \[ 2x - x + 5 - 3 = x + 2 \] ### Step 4: Write the final factored form Now, substitute back into the factored expression: \[ (x + y)(x + 2) \] Thus, the final factored form of the expression is: \[ \boxed{(x + y)(x + 2)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: x ^(3) - 64x

Fractorise: 5x (x -4) -7 (x -4)

Fractorise: 4x ^(2) -9y^(2)

Fractorise: x ^(3)-3x ^(2) + x-3

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: (3x-4y)^(2) - 25z ^(2)

Fractorise: 100-(x-5)^(2)

Fractorise: 12(2x - 3y )^(2) -16 (3y - 2x )

Fractorise: 16 x^(5) - 144 x ^(3)

Fractorise: x (a -3) + y ( 3 -a)