Home
Class 8
MATHS
Factorise: x^(2)-ax-bx + ab...

Factorise:
`x^(2)-ax-bx + ab`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^2 - ax - bx + ab \), we can follow these steps: ### Step 1: Rearrange the expression We start with the expression: \[ x^2 - ax - bx + ab \] We can rearrange it as: \[ x^2 - ax - bx + ab = x^2 - (a + b)x + ab \] ### Step 2: Group the terms Next, we can group the terms in pairs: \[ (x^2 - (a + b)x) + ab \] ### Step 3: Factor by grouping Now, we can factor out \( x \) from the first group: \[ x(x - (a + b)) + ab \] ### Step 4: Recognize a common factor Notice that we can rewrite \( ab \) as \( a(b - a) + b(a - b) \) to help us factor: \[ x(x - (a + b)) + ab = (x - a)(x - b) \] ### Step 5: Final factorization Thus, we can write the expression as: \[ (x - a)(x - b) \] ### Final Answer The factorised form of \( x^2 - ax - bx + ab \) is: \[ (x - a)(x - b) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 16a ^(2)- 24ab

Factorise: a ^(2) + bc+ ab +ac

Factorise : abx^2+a^2x+b^2x +ab

Factorise: ab ^(2) - bc^(2) - ab + c^(2)

Factorise: 15ab ^(2) - 20 a ^(2)b

Factorise: b^(2)-6ab-9a^(2)

Simplify/Factorise: a^(2)-3x^(2)-2ax

Factorise: ax ^(2) + by^(2) + bx^(2) + ay^(2)

Factorise x^(2) + a^(2) + 2a + 2x + 2ax .

Factorise. x^2-x(a+2b)+2ab