Home
Class 8
MATHS
Factorise: ab ^(2) - bc^(2) - ab + c^(...

Factorise:
`ab ^(2) - bc^(2) - ab + c^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( ab^2 - bc^2 - ab + c^2 \), we will follow these steps: ### Step 1: Group the terms We can group the terms in pairs to make it easier to factor: \[ (ab^2 - ab) + (-bc^2 + c^2) \] ### Step 2: Factor out the common factors from each group In the first group \( ab^2 - ab \), we can factor out \( ab \): \[ ab(b - 1) \] In the second group \( -bc^2 + c^2 \), we can factor out \( -c^2 \): \[ -c^2(b - 1) \] ### Step 3: Rewrite the expression with the factored groups Now we can rewrite the expression using the factored groups: \[ ab(b - 1) - c^2(b - 1) \] ### Step 4: Factor out the common binomial factor Now we see that \( (b - 1) \) is a common factor: \[ (b - 1)(ab - c^2) \] ### Final Answer Thus, the factorised form of the expression \( ab^2 - bc^2 - ab + c^2 \) is: \[ (b - 1)(ab - c^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 16a ^(2)- 24ab

Factorise: 15ab ^(2) - 20 a ^(2)b

Factorise: ab (x ^(2) + y ^(2)) - xy (a ^(2) + b ^(2))

Factorise: b^(2)-6ab-9a^(2)

Factorise: a ^(2) + bc+ ab +ac

Factorise: 6ab - b ^(2) + 12 ac - 2bc

Factorise: ab (c ^(2) +1) + c (a ^(2) + b ^(2))

Factorise : 1 + 2 ab - (a ^(2) + b ^(2))

Factorise 12a^(2)b+15ab^(2)

Factorise: x^(2)-ax-bx + ab