Home
Class 8
MATHS
Factorise: (x - 2y )^(2) + 4x - 8y...

Factorise:
`(x - 2y )^(2) + 4x - 8y`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( (x - 2y)^2 + 4x - 8y \), we can follow these steps: ### Step 1: Expand the square First, we expand the term \( (x - 2y)^2 \): \[ (x - 2y)^2 = x^2 - 4xy + 4y^2 \] ### Step 2: Rewrite the expression Now, substitute the expanded form back into the original expression: \[ x^2 - 4xy + 4y^2 + 4x - 8y \] ### Step 3: Rearrange the terms Next, we can rearrange the terms for easier factorization: \[ x^2 + 4x - 4xy + 4y^2 - 8y \] ### Step 4: Group the terms Now, we will group the terms: \[ (x^2 + 4x) + (-4xy + 4y^2) - 8y \] ### Step 5: Factor out common terms Now, we can factor out common terms from each group: 1. From \( x^2 + 4x \), we can factor out \( x \): \[ x(x + 4) \] 2. From \( -4xy + 4y^2 \), we can factor out \( 4y \): \[ 4y(-x + y) \] ### Step 6: Combine the factors Now we can combine the factored terms: \[ x(x + 4) + 4y(y - x) \] ### Step 7: Factor by grouping Notice that \( x - 2y \) appears in both terms. We can rearrange and factor: \[ (x - 2y)(x - 2y + 4) \] ### Final Answer Thus, the factorised form of the expression is: \[ (x - 2y)(x - 2y + 4) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 8 (4x + 5y)^(2) - 12 (4x + 5y)

Factorise : 16 (2x - y) ^(2) - 24 (4x ^(2) - y ^(2) ) + 9 ( 2x + y) ^(2)

Factorise: 4x ^(2) - y ^(2)+ 6y-9.

Factorise: 49 (2x + 3y) ^(2) - 70 ( 4x ^(2) - 9 y ^(2)) + 25 ( 2 x - 3y ) ^(2)

Factorise : 8x^3 - (2x-y)^3

Factorise: 4x ^(2) + 9y^(2) + 12 xy

Factorise : 81-(x+y)^2

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).

Factorise : (x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)