Home
Class 8
MATHS
Factorise: y ^(2) - xy (1-x)-x ^(3)...

Factorise:
`y ^(2) - xy (1-x)-x ^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( y^2 - xy(1-x) - x^3 \), we can follow these steps: ### Step 1: Expand the expression First, we need to expand the term \( -xy(1-x) \): \[ y^2 - xy(1-x) - x^3 = y^2 - xy + x^2y - x^3 \] ### Step 2: Rearrange the terms Now, let's rearrange the terms: \[ y^2 + x^2y - xy - x^3 \] ### Step 3: Group the terms Next, we can group the terms to factor them more easily: \[ (y^2 + x^2y) + (-xy - x^3) \] ### Step 4: Factor out the common factors Now, we can factor out the common factors from each group: 1. From \( y^2 + x^2y \), we can factor out \( y \): \[ y(y + x^2) \] 2. From \( -xy - x^3 \), we can factor out \( -x \): \[ -x(y + x^2) \] Putting it all together, we have: \[ y(y + x^2) - x(y + x^2) \] ### Step 5: Factor out the common binomial Now, we can see that \( (y + x^2) \) is a common factor: \[ (y + x^2)(y - x) \] ### Final Answer Thus, the factorised form of the expression \( y^2 - xy(1-x) - x^3 \) is: \[ (y + x^2)(y - x) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: x ^(2) - xy + y -x

Factorise: 8x ^(2) -72xy + 12x

Factorise: x ^(2) - xz + xy - yz

Factorise : x-8xy^(3)

Factorise: (2x +5y)^2-1

Factorise: ab (x ^(2) + y ^(2)) - xy (a ^(2) + b ^(2))

Factorise: x ^(3) + (1)/(x ^(3)) - 2

Factorise : x^(2)-y^(2)-2x+1