Home
Class 8
MATHS
Fractorise: (ax + by) ^(2) + (bx - ay)...

Fractorise:
`(ax + by) ^(2) + (bx - ay)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \((ax + by)^2 + (bx - ay)^2\), we can follow these steps: ### Step 1: Expand the squares We start by expanding both squares using the formula \((a + b)^2 = a^2 + b^2 + 2ab\) and \((a - b)^2 = a^2 + b^2 - 2ab\). \[ (ax + by)^2 = a^2x^2 + b^2y^2 + 2abxy \] \[ (bx - ay)^2 = b^2x^2 + a^2y^2 - 2abxy \] ### Step 2: Combine the expanded expressions Now, we combine the two expanded expressions: \[ (ax + by)^2 + (bx - ay)^2 = (a^2x^2 + b^2y^2 + 2abxy) + (b^2x^2 + a^2y^2 - 2abxy) \] ### Step 3: Simplify the expression Next, we simplify the combined expression: \[ = a^2x^2 + b^2y^2 + 2abxy + b^2x^2 + a^2y^2 - 2abxy \] The \(2abxy\) and \(-2abxy\) cancel each other out: \[ = a^2x^2 + b^2y^2 + b^2x^2 + a^2y^2 \] ### Step 4: Rearrange the terms We can rearrange the terms: \[ = a^2x^2 + b^2x^2 + a^2y^2 + b^2y^2 \] ### Step 5: Factor out common terms Now, we can factor out the common terms: \[ = (a^2 + b^2)(x^2 + y^2) \] ### Final Answer Thus, the factorized form of the expression \((ax + by)^2 + (bx - ay)^2\) is: \[ (a^2 + b^2)(x^2 + y^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: ax ^(2) + by^(2) + bx^(2) + ay^(2)

2 (ax+by)^(2)-(bx+ay)^(2)

Fractorise: 4a^(2) -9

(ax+by)^(2)-(ay+bx)^(2)

Consider the expressions given below and find if the expressions are symmetric or not (a) ax + ay + b (b) ax^(2) + bxy + ay^(2)

Solve: ax - by = 1 bx + ay = 0

Solve: ax + by = a - b bx - ay = a + b

Find the value of x and y by solving given linear equations ax + by = a^2 ; bx + ay = b^2

Factorize: ax+bx+ay+byax^(2)+by^(2)+bx^(2)+ay^(2),a^(2)+bc+ab+acax-ay+bx-by

Factoris the expression. 2ax ^(2) + 4 axy + 3bx ^(2) + 2 ay ^(2) + 6 bxy + 3 by ^(2)