Home
Class 8
MATHS
Fractorise: ab ^(2) + (a -1) b-1...

Fractorise:
`ab ^(2) + (a -1) b-1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( ab^2 + (a - 1)b - 1 \), we will follow these steps: ### Step 1: Rewrite the expression The expression is already given as: \[ ab^2 + (a - 1)b - 1 \] ### Step 2: Identify the coefficients We can identify the coefficients of the quadratic expression in terms of \( b \): - The coefficient of \( b^2 \) is \( a \). - The coefficient of \( b \) is \( (a - 1) \). - The constant term is \( -1 \). ### Step 3: Use the quadratic formula We can factor the quadratic expression \( ab^2 + (a - 1)b - 1 \) using the quadratic formula, which is given by: \[ b = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \] where \( A = a \), \( B = (a - 1) \), and \( C = -1 \). ### Step 4: Calculate the discriminant First, we calculate the discriminant \( B^2 - 4AC \): \[ B^2 = (a - 1)^2 = a^2 - 2a + 1 \] \[ 4AC = 4 \cdot a \cdot (-1) = -4a \] Thus, the discriminant is: \[ D = (a^2 - 2a + 1) + 4a = a^2 + 2a + 1 = (a + 1)^2 \] ### Step 5: Find the roots Now we can find the roots using the quadratic formula: \[ b = \frac{-(a - 1) \pm (a + 1)}{2a} \] Calculating the two cases: 1. \( b_1 = \frac{-(a - 1) + (a + 1)}{2a} = \frac{2}{2a} = \frac{1}{a} \) 2. \( b_2 = \frac{-(a - 1) - (a + 1)}{2a} = \frac{-2a}{2a} = -1 \) ### Step 6: Write the factorized form Thus, the expression can be factorized as: \[ ab^2 + (a - 1)b - 1 = a(b - \frac{1}{a})(b + 1) \] or \[ = a(b - 1)(b + 1) \] ### Final Factorized Expression The final factorized form of the expression is: \[ a(b - 1)(b + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 4a^(2) -9

Fractorise: 63a ^(2)b ^(2) -7

Fractorise: 12x ^(2) - 27

Fractorise: 1- (b-c)^(2)

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: 81-49x ^(2)

Fractorise: 9a ^(2)b ^(2) - 25

Fractorise: 16s ^(2) - 144

Fractorise: ab (x ^(2) + y^(2) ) + xy (a^(2) + b ^(2)).

Fractorise: x ^(2) - x (a + 2b) + 2ab