Home
Class 8
MATHS
Factorise: ab (x ^(2) + y ^(2)) - xy (...

Factorise:
`ab (x ^(2) + y ^(2)) - xy (a ^(2) + b ^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( ab(x^2 + y^2) - xy(a^2 + b^2) \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ ab(x^2 + y^2) - xy(a^2 + b^2) \] ### Step 2: Expand the Terms Now, we expand both terms: \[ = abx^2 + aby^2 - (xya^2 + xyb^2) \] This gives us: \[ = abx^2 + aby^2 - xya^2 - xyb^2 \] ### Step 3: Group the Terms Next, we group the terms in pairs: \[ = (abx^2 - xya^2) + (aby^2 - xyb^2) \] ### Step 4: Factor Out Common Factors Now we factor out the common factors from each group: 1. From the first group \( abx^2 - xya^2 \), we can factor out \( x \): \[ = x(abx - ya^2) \] 2. From the second group \( aby^2 - xyb^2 \), we can factor out \( y \): \[ = y(aby - xb^2) \] ### Step 5: Rearranging and Factoring Now we can rearrange and factor out the common binomial factor: \[ = x(a^2b - yb^2) + y(ab - xb) \] ### Step 6: Final Factorization Now we can see that both terms have a common factor of \( (ax - by) \): \[ = (ax - by)(b + a) \] Thus, the final factorised form of the expression \( ab(x^2 + y^2) - xy(a^2 + b^2) \) is: \[ (ax - by)(ab + xy) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: ab (x ^(2) + y^(2) ) + xy (a^(2) + b ^(2)).

Factorise: 15ab ^(2) - 20 a ^(2)b

Factorise: x ^(2) - xy + y -x

Factorise: ab (c ^(2) +1) + c (a ^(2) + b ^(2))

Factorise : 1 + 2 ab - (a ^(2) + b ^(2))

Factorise: 4x ^(2) + 9y^(2) + 12 xy

Factorise : 9x^(2) +y^(4) - 6xy^2 -z^(4)

Factorise: x ^(2) - xz + xy - yz