Home
Class 8
MATHS
Fractorise: x ^(2) - x (a + 2b) + 2ab...

Fractorise:
`x ^(2) - x (a + 2b) + 2ab `

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 - x(a + 2b) + 2ab \), we can follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ x^2 - x(a + 2b) + 2ab \] ### Step 2: Expand the middle term Distribute \( -x \) in the middle term: \[ x^2 - ax - 2bx + 2ab \] ### Step 3: Rearrange the terms Rearranging the terms gives us: \[ x^2 - ax - 2bx + 2ab \] ### Step 4: Group the terms Now, we can group the first two terms and the last two terms: \[ (x^2 - ax) + (-2bx + 2ab) \] ### Step 5: Factor out the common factors From the first group \( (x^2 - ax) \), we can factor out \( x \): \[ x(x - a) \] From the second group \( (-2bx + 2ab) \), we can factor out \( -2b \): \[ -2b(x - a) \] ### Step 6: Combine the factored terms Now we have: \[ x(x - a) - 2b(x - a) \] Notice that \( (x - a) \) is common in both terms, so we can factor it out: \[ (x - a)(x - 2b) \] ### Final Answer Thus, the factorized form of the expression \( x^2 - x(a + 2b) + 2ab \) is: \[ (x - a)(x - 2b) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise SOLVED EXAMPLES|22 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: x ^(3) - 64x

Fractorise: 12x ^(2) - 27

Fractorise: 4a^(2) -9

Fractorise: 81-49x ^(2)

Fractorise: 4x ^(2) -9y^(2)

Fractorise: 16s ^(2) - 144

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: ab ^(2) + (a -1) b-1

Fractorise the 4x ^(2) - 20 x + 25

Fractorise: 12x +15