Home
Class 8
MATHS
Fractorise: 63a ^(2) - 112b^(2)...

Fractorise:
`63a ^(2) - 112b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 63a^2 - 112b^2 \), we can follow these steps: ### Step 1: Identify the common factor First, we look for the greatest common factor (GCF) of the coefficients 63 and 112. The GCF is 7. ### Step 2: Factor out the GCF We can factor out 7 from the expression: \[ 63a^2 - 112b^2 = 7(9a^2 - 16b^2) \] ### Step 3: Recognize the difference of squares Next, we notice that \( 9a^2 - 16b^2 \) is a difference of squares. The difference of squares formula is: \[ A^2 - B^2 = (A + B)(A - B) \] In our case, \( A^2 = 9a^2 \) and \( B^2 = 16b^2 \). ### Step 4: Identify \( A \) and \( B \) From the expressions: - \( A = 3a \) (since \( (3a)^2 = 9a^2 \)) - \( B = 4b \) (since \( (4b)^2 = 16b^2 \)) ### Step 5: Apply the difference of squares formula Now we can apply the difference of squares formula: \[ 9a^2 - 16b^2 = (3a + 4b)(3a - 4b) \] ### Step 6: Combine the factors Putting it all together, we have: \[ 63a^2 - 112b^2 = 7(3a + 4b)(3a - 4b) \] ### Final Answer Thus, the factorized form of \( 63a^2 - 112b^2 \) is: \[ 7(3a + 4b)(3a - 4b) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 16s ^(2) - 144

Fractorise: 12x ^(2) - 27

Fractorise: 36c ^(2) - (5a+b)^(2)

Fractorise: 20a ^(2) - 45 b ^(2)

Fractorise: 63a ^(2)b ^(2) -7

Fractorise: 4a^(2) -9

Fractorise: x ^(3) - 64x

Fractorise: 25 -a^(2) -b ^(2) - 2ab

Fractorise: 81-49x ^(2)

Fractorise: (3x-4y)^(2) - 25z ^(2)