Home
Class 8
MATHS
Fractorise: x ^(3) - 64x...

Fractorise:
` x ^(3) - 64x`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^3 - 64x \), we can follow these steps: ### Step 1: Identify the common factor The expression \( x^3 - 64x \) has a common factor of \( x \). ### Step 2: Factor out the common factor We can factor out \( x \) from the expression: \[ x^3 - 64x = x(x^2 - 64) \] ### Step 3: Recognize the difference of squares Now, we notice that \( x^2 - 64 \) is a difference of squares. It can be expressed as: \[ x^2 - 64 = x^2 - 8^2 \] ### Step 4: Apply the difference of squares formula Using the difference of squares formula \( a^2 - b^2 = (a - b)(a + b) \), we can factor \( x^2 - 8^2 \): \[ x^2 - 8^2 = (x - 8)(x + 8) \] ### Step 5: Combine the factors Now we can combine all the factors we have: \[ x(x^2 - 64) = x(x - 8)(x + 8) \] ### Final Answer Thus, the fully factored form of \( x^3 - 64x \) is: \[ \boxed{x(x - 8)(x + 8)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 12x ^(2) - 27

Fractorise: 16 x^(5) - 144 x ^(3)

Fractorise: 16p^(3) -4p

Fractorise: x ^(3) (2a -b) + x^(2) (2a -b)

Fractorise: x ^(2) - x (a + 2b) + 2ab

Fractorise the a ^(3) - 4a ^(2) + 12 - 3a

Fractorise: 12x +15

Fractorise: 81-49x ^(2)

Fractorise: x ^(3)-3x ^(2) + x-3

Fractorise the 4x ^(2) - 20 x + 25