Home
Class 8
MATHS
Fractorise: 63a ^(2)b ^(2) -7...

Fractorise:
`63a ^(2)b ^(2) -7`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 63a^2b^2 - 7 \), we can follow these steps: ### Step 1: Identify the common factor The first step is to identify the common factor in both terms of the expression. Here, both terms \( 63a^2b^2 \) and \( 7 \) have a common factor of \( 7 \). ### Step 2: Factor out the common factor We can factor out \( 7 \) from the expression: \[ 63a^2b^2 - 7 = 7(9a^2b^2 - 1) \] ### Step 3: Recognize the difference of squares Now, we have \( 9a^2b^2 - 1 \) inside the parentheses. This expression can be recognized as a difference of squares, which follows the formula \( A^2 - B^2 = (A + B)(A - B) \). Here, we can rewrite \( 9a^2b^2 \) as \( (3ab)^2 \) and \( 1 \) as \( 1^2 \). ### Step 4: Apply the difference of squares formula Using the difference of squares formula: \[ 9a^2b^2 - 1 = (3ab)^2 - 1^2 = (3ab + 1)(3ab - 1) \] ### Step 5: Combine the factors Now, we can combine the factors we found: \[ 63a^2b^2 - 7 = 7(3ab + 1)(3ab - 1) \] ### Final Answer Thus, the factorization of \( 63a^2b^2 - 7 \) is: \[ 7(3ab + 1)(3ab - 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 9a ^(2)b ^(2) - 25

Fractorise: 25 -a^(2) -b ^(2) - 2ab

Fractorise: 63a ^(2) - 112b^(2)

Fractorise: 4x ^(2) -9y^(2)

Fractorise: 9a^(2) -b ^(2)+4b-4

Fractorise: ab (x ^(2) + y^(2) ) + xy (a^(2) + b ^(2)).

Fractorise: 4a^(2) -9

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: 20a ^(2) - 45 b ^(2)

Fractorise: 81-49x ^(2)