Home
Class 8
MATHS
Fractorise: (l+m) ^(2) -(l -m)^(2)...

Fractorise:
`(l+m) ^(2) -(l -m)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \((l+m)^2 - (l-m)^2\), we can follow these steps: ### Step 1: Recognize the difference of squares The expression \((l+m)^2 - (l-m)^2\) is in the form of \(a^2 - b^2\), where \(a = (l+m)\) and \(b = (l-m)\). We can use the identity: \[ a^2 - b^2 = (a+b)(a-b) \] ### Step 2: Apply the identity Using the identity, we can rewrite the expression: \[ (l+m)^2 - (l-m)^2 = [(l+m) + (l-m)][(l+m) - (l-m)] \] ### Step 3: Simplify the first bracket Now, simplify \((l+m) + (l-m)\): \[ (l+m) + (l-m) = l + m + l - m = 2l \] ### Step 4: Simplify the second bracket Next, simplify \((l+m) - (l-m)\): \[ (l+m) - (l-m) = l + m - l + m = 2m \] ### Step 5: Combine the results Now, substituting back into the expression, we have: \[ (l+m)^2 - (l-m)^2 = (2l)(2m) \] ### Step 6: Final expression This simplifies to: \[ 4lm \] Thus, the factorized form of \((l+m)^2 - (l-m)^2\) is: \[ 4lm \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 14m -21

Write the greatest common factor in each of the term. l ^(2) m ^(2) n, l m ^(2) n ^(2) , l ^(2) mn ^(2)

Dimension of sqrt((in_(0))/(mu_(0))) are (A) [M L^(2) T^(-3) A^(-2)] (B) [M^(-1) L^(-2) T^(3) A^(2)] (C) [M^(2)L^(2)T^(-3) A^(2)] (D) [M^(-1) L^(2) T^(3) A^(2)]

If l,m,n are real l!=m, then the roots of the equation (l-m)x^(2)-5(l+m)x-2(l-m)=0 are a.real and equal b.Complex c.real and unequal d.none of these

|[(m+n)^(2), l^(2), mn], [(n+l)^(2), m^(2), ln], [(l+m)^(2), n^(2), lm]| =(l^(2) +m^(2) +n^(2))(l-m)(m-n)(n-l)(l+m+n)

If 2y + (1)/(2y) = l and 2y - (1)/(2y) = m , then l^(2) - m^(2) = "______" .

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

If cosectheta-sintheta=landsectheta-costheta=m , then l^(2)m^(2)(l^(2)+m^(2)+3)=?