Home
Class 8
MATHS
Factorise: (2x +5y)^2-1...

Factorise:
`(2x +5y)^2-1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((2x + 5y)^2 - 1\), we can use the difference of squares formula. Here’s the step-by-step solution: ### Step 1: Identify the expression as a difference of squares The expression \((2x + 5y)^2 - 1\) can be recognized as a difference of squares, which follows the formula: \[ a^2 - b^2 = (a - b)(a + b) \] In our case, we can identify: - \(a = (2x + 5y)\) - \(b = 1\) ### Step 2: Apply the difference of squares formula Using the difference of squares formula, we can rewrite the expression: \[ (2x + 5y)^2 - 1^2 = ((2x + 5y) - 1)((2x + 5y) + 1) \] ### Step 3: Simplify the factors Now we simplify the factors: 1. The first factor: \[ (2x + 5y) - 1 = 2x + 5y - 1 \] 2. The second factor: \[ (2x + 5y) + 1 = 2x + 5y + 1 \] ### Step 4: Write the final factored form Putting it all together, we have: \[ (2x + 5y - 1)(2x + 5y + 1) \] Thus, the factored form of the expression \((2x + 5y)^2 - 1\) is: \[ (2x + 5y - 1)(2x + 5y + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 8 (4x + 5y)^(2) - 12 (4x + 5y)

Factorise : 16 (2x - y) ^(2) - 24 (4x ^(2) - y ^(2) ) + 9 ( 2x + y) ^(2)

Factorise: 49 (2x + 3y) ^(2) - 70 ( 4x ^(2) - 9 y ^(2)) + 25 ( 2 x - 3y ) ^(2)

Factorise: y ^(2) + y-72

Factorise: (x - 2y )^(2) + 4x - 8y

Factorise: (x +5) ^(2) -4 ( x + 5)

Factorise : 81-(x+y)^2

Factorise: 5a (2x -3y) + 2b (2x -3y)

Factorise: 25(x+y)^(2)- 36 (x-2y)^(2).

Factorise : ((25)/(4)x^2-(1)/(9)y^2)