Home
Class 8
MATHS
Fractorise: (3x-4y)^(2) - 25z ^(2)...

Fractorise:
`(3x-4y)^(2) - 25z ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \((3x - 4y)^2 - 25z^2\), we can follow these steps: ### Step 1: Identify the structure of the expression The expression \((3x - 4y)^2 - 25z^2\) is in the form of \(a^2 - b^2\), where: - \(a = 3x - 4y\) - \(b = 5z\) (since \(25z^2 = (5z)^2\)) ### Step 2: Apply the difference of squares formula The difference of squares can be factored using the formula: \[ a^2 - b^2 = (a + b)(a - b) \] Substituting our values for \(a\) and \(b\): \[ (3x - 4y)^2 - (5z)^2 = (3x - 4y + 5z)(3x - 4y - 5z) \] ### Step 3: Write the final factored form Thus, the factored form of the expression is: \[ (3x - 4y + 5z)(3x - 4y - 5z) \] ### Final Answer: \[ (3x - 4y + 5z)(3x - 4y - 5z) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 9a ^(2)b ^(2) - 25

Fractorise: 4x ^(2) -9y^(2)

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: x ^(3) (2a -b) + x^(2) (2a -b)

Fractorise: 25 -a^(2) -b ^(2) - 2ab

Fractorise: x ^(3)-3x ^(2) + x-3

Fractorise: 12(2x - 3y )^(2) -16 (3y - 2x )

Fractorise: ab (x ^(2) + y^(2) ) + xy (a^(2) + b ^(2)).

Fractorise: 4a^(2) -9

Fractorise: (x +y)(2x +5) - (x + y) (x +3)