Home
Class 8
MATHS
Fractorise: 25 -a^(2) -b ^(2) - 2ab...

Fractorise:
`25 -a^(2) -b ^(2) - 2ab`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 25 - a^2 - b^2 - 2ab \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 25 - a^2 - b^2 - 2ab \] We can rearrange it to group the \( a^2 \), \( b^2 \), and \( 2ab \) terms together: \[ 25 - (a^2 + b^2 + 2ab) \] ### Step 2: Recognize a perfect square Notice that \( a^2 + b^2 + 2ab \) can be rewritten as a perfect square: \[ a^2 + b^2 + 2ab = (a + b)^2 \] Thus, we can rewrite the expression as: \[ 25 - (a + b)^2 \] ### Step 3: Rewrite 25 as a perfect square Next, we recognize that \( 25 \) can also be expressed as a perfect square: \[ 25 = 5^2 \] So we can rewrite the expression as: \[ 5^2 - (a + b)^2 \] ### Step 4: Apply the difference of squares formula Now we can apply the difference of squares formula, which states that \( x^2 - y^2 = (x - y)(x + y) \). Here, let \( x = 5 \) and \( y = (a + b) \): \[ 5^2 - (a + b)^2 = (5 - (a + b))(5 + (a + b)) \] ### Step 5: Simplify the expression This simplifies to: \[ (5 - a - b)(5 + a + b) \] ### Final Answer Thus, the factorized form of the expression \( 25 - a^2 - b^2 - 2ab \) is: \[ (5 - a - b)(5 + a + b) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 20a ^(2) - 45 b ^(2)

Fractorise: 9a^(2) -b ^(2)+4b-4

Fractorise: 12x ^(2) - 27

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: 9a ^(2)b ^(2) - 25

Fractorise: 63a ^(2) - 112b^(2)

Fractorise: x ^(2) - x (a + 2b) + 2ab

Fractorise: 1- (b-c)^(2)

Fractorise: (2a+3b)^(2)-16c ^(2)

Fractorise: 4x ^(2) -9y^(2)