Home
Class 8
MATHS
Fractorise: 9a^(2) -b ^(2)+4b-4...

Fractorise:
`9a^(2) -b ^(2)+4b-4`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \(9a^2 - b^2 + 4b - 4\), we can follow these steps: ### Step 1: Rearrange the expression We can rearrange the expression to group similar terms: \[ 9a^2 - (b^2 - 4b + 4) \] ### Step 2: Recognize a perfect square Notice that the expression inside the parentheses, \(b^2 - 4b + 4\), is a perfect square trinomial. It can be factored as: \[ b^2 - 4b + 4 = (b - 2)^2 \] ### Step 3: Substitute back into the expression Now, we substitute this back into our expression: \[ 9a^2 - (b - 2)^2 \] ### Step 4: Apply the difference of squares formula The expression \(9a^2 - (b - 2)^2\) is a difference of squares, which can be factored using the formula \(A^2 - B^2 = (A + B)(A - B)\). Here, \(A = 3a\) and \(B = (b - 2)\): \[ 9a^2 - (b - 2)^2 = (3a + (b - 2))(3a - (b - 2)) \] ### Step 5: Simplify the factors Simplifying the factors gives us: \[ (3a + b - 2)(3a - b + 2) \] ### Final Factored Form Thus, the final factored form of the expression \(9a^2 - b^2 + 4b - 4\) is: \[ (3a + b - 2)(3a - b + 2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 4a^(2) -9

Fractorise: 9a ^(2)b ^(2) - 25

Fractorise: 25 -a^(2) -b ^(2) - 2ab

Fractorise: 63a ^(2)b ^(2) -7

Fractorise: 4x ^(2) -9y^(2)

Fractorise: 20a ^(2) - 45 b ^(2)

Fractorise: 25a^(2)-4b^(2) +28bc-49c^(2)

Fractorise: 63a ^(2) - 112b^(2)

Fractorise: ab ^(2) + (a -1) b-1

Fractorise: 16p^(3) -4p