Home
Class 8
MATHS
Evaluate {(405)^(2) - (395)^(2)}....

Evaluate
`{(405)^(2) - (395)^(2)}.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( 405^2 - 395^2 \), we can use the difference of squares formula, which states that: \[ A^2 - B^2 = (A - B)(A + B) \] ### Step-by-Step Solution: 1. **Identify A and B**: - Here, we can let \( A = 405 \) and \( B = 395 \). 2. **Apply the Difference of Squares Formula**: - Substitute \( A \) and \( B \) into the formula: \[ 405^2 - 395^2 = (405 - 395)(405 + 395) \] 3. **Calculate \( A - B \)**: - Calculate \( 405 - 395 \): \[ 405 - 395 = 10 \] 4. **Calculate \( A + B \)**: - Calculate \( 405 + 395 \): \[ 405 + 395 = 800 \] 5. **Multiply the Results**: - Now, multiply the two results: \[ 10 \times 800 = 8000 \] ### Final Answer: Thus, \( 405^2 - 395^2 = 8000 \). ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7A|39 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (sqrt 80)/(sqrt(405))

The value of tan(-405^@) is

(4.05)^(3)~~....

Evaluate :((log_(3)(135))/(log_(15)(3)))-((log_(3)(5))/(log_(405)(3)))

The coefficient of x^(4) in (x/2-3/x^(2))^(10) is (405)/(256) b.(504)/(259) c.(450)/(263) d.none of these

Find the values of (i) " sin "405^(@) " " (ii) " sec " (-1470^(@)) " "(iii) " tan " (-300^(@)) (iv) " cot " (585^(@)) " "(v) " cosec " (-750^(@)) " "(vi) " cos " (-2220^(@))

Find the value of sin(-405^(@))