Home
Class 8
MATHS
Factorise: 9m^(2) + 24m + 16...

Factorise:
`9m^(2) + 24m + 16`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 9m^2 + 24m + 16 \), we can follow these steps: ### Step 1: Identify the coefficients The given quadratic expression is in the form \( ax^2 + bx + c \), where: - \( a = 9 \) - \( b = 24 \) - \( c = 16 \) ### Step 2: Multiply \( a \) and \( c \) We need to multiply \( a \) and \( c \): \[ a \cdot c = 9 \cdot 16 = 144 \] ### Step 3: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \( 144 \) and add up to \( 24 \). The numbers are \( 12 \) and \( 12 \) because: \[ 12 \cdot 12 = 144 \quad \text{and} \quad 12 + 12 = 24 \] ### Step 4: Rewrite the middle term using the two numbers Now we can rewrite the expression by splitting the middle term \( 24m \) into \( 12m + 12m \): \[ 9m^2 + 12m + 12m + 16 \] ### Step 5: Group the terms Next, we group the terms: \[ (9m^2 + 12m) + (12m + 16) \] ### Step 6: Factor by grouping Now we factor out the common factors from each group: \[ 3m(3m + 4) + 4(3m + 4) \] ### Step 7: Factor out the common binomial Now we can factor out the common binomial \( (3m + 4) \): \[ (3m + 4)(3m + 4) \] or we can write it as: \[ (3m + 4)^2 \] ### Final Answer Thus, the factorised form of \( 9m^2 + 24m + 16 \) is: \[ (3m + 4)^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 3m^(2) + 24m + 36

(a) Factorise : 9x^(2) - 24 xy + 16y^(2) (b) Factorise : 25x^(2) + (1)/(25x^(2)) + 2

Factorise: y ^(2) + 10y +24

Factorise: x ^(2) - 5x - 24

Factorise: 16a ^(2)- 24ab

Factorise m^(2)+m-56

Factorise: x ^(2) - 10x + 24

Factories: 16x ^(2)- 24 x + 9

Factorise: m ^(2) - 4 mn + 4n^(2)