Home
Class 8
MATHS
Factorise: m ^(2) - 4 mn + 4n^(2)...

Factorise:
`m ^(2) - 4 mn + 4n^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( m^2 - 4mn + 4n^2 \), we can follow these steps: ### Step 1: Identify the structure of the expression The expression \( m^2 - 4mn + 4n^2 \) resembles the standard form of a perfect square trinomial, which is \( a^2 - 2ab + b^2 = (a - b)^2 \). ### Step 2: Rewrite the expression We can rewrite \( 4n^2 \) as \( (2n)^2 \). Thus, the expression becomes: \[ m^2 - 4mn + (2n)^2 \] ### Step 3: Identify \( a \) and \( b \) In our case, we can identify: - \( a = m \) - \( b = 2n \) ### Step 4: Apply the perfect square formula Now we can apply the perfect square formula: \[ a^2 - 2ab + b^2 = (a - b)^2 \] Substituting \( a \) and \( b \): \[ m^2 - 2(m)(2n) + (2n)^2 = (m - 2n)^2 \] ### Step 5: Write the final factorised form Thus, the factorised form of the expression \( m^2 - 4mn + 4n^2 \) is: \[ (m - 2n)^2 \] ### Summary of the factorisation The final answer is: \[ m^2 - 4mn + 4n^2 = (m - 2n)^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 3x ^(2) - 4x -4

Factorise: 4n^(2) - 8n +3

factorise: 4y-y ^ (2) -4

Factorise : 4b ^(2) - 1 - 2a - a ^(2).

Factorise x^(2)+4x+4

Factorise: 2n^2 + 3n

Factorise: a ^(4) - 20 a ^(2) + 64

Factorise p ^(4) + q ^(4) + p ^(2) q ^(2).

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).