Home
Class 8
MATHS
Factories: m^(4) + 2m^(2) n ^(2) +n ^(...

Factories:
`m^(4) + 2m^(2) n ^(2) +n ^(4)`

A

`(m ^(2)+n)^(2)`

B

`(m ^(2)+n^(2))(m^2 - n^2)`

C

`(m ^(2)+n^(2))^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( m^4 + 2m^2n^2 + n^4 \), we can follow these steps: ### Step 1: Identify the structure of the expression The expression \( m^4 + 2m^2n^2 + n^4 \) resembles the expanded form of the square of a binomial. We recall the formula for the square of a binomial: \[ (a + b)^2 = a^2 + 2ab + b^2 \] ### Step 2: Rewrite the expression We can see that: - \( a = m^2 \) - \( b = n^2 \) Thus, we can rewrite our expression as: \[ (m^2)^2 + 2(m^2)(n^2) + (n^2)^2 \] ### Step 3: Apply the binomial square formula According to the binomial square formula, we can factor this expression as: \[ (m^2 + n^2)^2 \] ### Final Answer Therefore, the factorization of \( m^4 + 2m^2n^2 + n^4 \) is: \[ (m^2 + n^2)^2 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

m ^(4) + 9m^(2) n ^(2) + 81 n ^(4)

Factorise: m ^(2) - 4 mn + 4n^(2)

Knowledge Check

  • Factories: (l +m)^(2) - 4 lm

    A
    `(l+m-2lm)(l+m+2lm)`
    B
    `(l+m)^(2)`
    C
    `(l-m)^(2)`
    D
    none of these
  • Simplify the expression : 5m^(2)n^(2) - 3n^(2) + 6m^(2) - (9n^(2) + 2m^(2)n^(2)) and find its value when m = -2 and n = 4.

    A
    192
    B
    96
    C
    240
    D
    24
  • Similar Questions

    Explore conceptually related problems

    Factorise : 4m^(3)n^(2) +12 m^(2)n^(2)+18 m^(4)n^(3)

    Factoris the expression. l ^(2) m ^(2) n - lm ^(2) n ^(2) - l^(2) mn ^(2)

    Given the number of trms in ech of the expressions. - 4m ^(2) - 7m ^(2) n - 9 n ^(2) m + 12 n ^(2)

    If "cosec" theta - sin theta = m and sec theta - cos theta = n, then what is m^(4/3) n^(2/3) +m^(2/3) n^(4/3) equal to ?

    Let term as 4 m ^(3) n ^(2) is

    (m^(2)-n^(2))^(2)+2m^(2)n^(2)