Home
Class 8
MATHS
Factories: (l +m)^(2) - 4 lm...

Factories:
`(l +m)^(2) - 4 lm`

A

`(l+m-2lm)(l+m+2lm)`

B

`(l+m)^(2)`

C

`(l-m)^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \((l + m)^{2} - 4lm\), we can follow these steps: ### Step 1: Expand the square Start by expanding \((l + m)^{2}\): \[ (l + m)^{2} = l^{2} + 2lm + m^{2} \] ### Step 2: Substitute the expansion into the expression Now, substitute the expansion back into the original expression: \[ l^{2} + 2lm + m^{2} - 4lm \] ### Step 3: Combine like terms Combine the like terms in the expression: \[ l^{2} + 2lm - 4lm + m^{2} = l^{2} - 2lm + m^{2} \] ### Step 4: Recognize the perfect square Notice that the expression \(l^{2} - 2lm + m^{2}\) is a perfect square: \[ l^{2} - 2lm + m^{2} = (l - m)^{2} \] ### Final Answer Thus, the factorization of the original expression \((l + m)^{2} - 4lm\) is: \[ (l - m)^{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7B|28 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorize (l+m)^(2)-4lm

Fractorise: (l+m) ^(2) -(l -m)^(2)

Factories: 9y^(2) - 12y +4

Factories: m^(4) + 2m^(2) n ^(2) +n ^(4)

Factories: 4y ^(2) + 20y + 25

Factories x^(4)+4

Factoris the expression. l ^(2) m ^(2) n - lm ^(2) n ^(2) - l^(2) mn ^(2)

If alpha, beta are the roots of the equation x^(2) - lm + m = 0 , then find the value of 1/(alpha^(2)) + 1/(beta^(2)) in terms of l and m.