Home
Class 8
MATHS
Factorise: z ^(2) + 12z+27...

Factorise:
`z ^(2) + 12z+27`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( z^2 + 12z + 27 \), we will follow these steps: ### Step 1: Identify the coefficients The expression is in the standard quadratic form \( az^2 + bz + c \), where: - \( a = 1 \) (coefficient of \( z^2 \)) - \( b = 12 \) (coefficient of \( z \)) - \( c = 27 \) (constant term) ### Step 2: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \( ac = 1 \times 27 = 27 \) and add to \( b = 12 \). The pairs of factors of 27 are: - \( 1 \times 27 \) - \( 3 \times 9 \) Among these, \( 3 \) and \( 9 \) add up to \( 12 \): - \( 3 + 9 = 12 \) ### Step 3: Rewrite the middle term Now, we can rewrite the expression \( z^2 + 12z + 27 \) using the numbers we found: \[ z^2 + 3z + 9z + 27 \] ### Step 4: Factor by grouping Next, we will group the terms: \[ (z^2 + 3z) + (9z + 27) \] Now, we factor out the common factors in each group: - From \( z^2 + 3z \), we can factor out \( z \): \[ z(z + 3) \] - From \( 9z + 27 \), we can factor out \( 9 \): \[ 9(z + 3) \] ### Step 5: Combine the factors Now we can combine the factored groups: \[ z(z + 3) + 9(z + 3) \] This can be factored further as: \[ (z + 3)(z + 9) \] ### Final Answer Thus, the factorised form of \( z^2 + 12z + 27 \) is: \[ (z + 3)(z + 9) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: z ^(2) - 12z- 45

Factorise: 3z ^(2) - 10z + 8

Factorise: z ^(2) +19z-150

Factorise : (x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)

Factorise: 3 + 23z - 8z^(2)

(a) Factorise : x^(2) - (z-5)x - 5z (b) Factorise : x^(2) + x - y + y^(2) - 2xy

Factorise y^(2) + 2xy + 2 xz - z^(2) .

Factorise: (5x - y) ^(3) + (y - 4z) ^(3) + (4z - 5x) ^(3)

Factorise: (1)/(64) a ^(3) - (1)/(16) a ^(2) b + (1)/(12) ab ^(2) - (1)/(27) b ^(3)