Home
Class 8
MATHS
Factorise: y ^(2) - 21y + 90...

Factorise:
`y ^(2) - 21y + 90`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( y^2 - 21y + 90 \), we can follow these steps: ### Step 1: Identify the coefficients The given quadratic expression is in the form \( ay^2 + by + c \), where: - \( a = 1 \) (coefficient of \( y^2 \)) - \( b = -21 \) (coefficient of \( y \)) - \( c = 90 \) (constant term) ### Step 2: Multiply \( a \) and \( c \) We need to multiply \( a \) and \( c \): \[ a \cdot c = 1 \cdot 90 = 90 \] ### Step 3: Find two numbers that multiply to \( ac \) and add to \( b \) We are looking for two numbers that multiply to \( 90 \) and add to \( -21 \). The numbers we find are \( -15 \) and \( -6 \): \[ -15 \times -6 = 90 \quad \text{and} \quad -15 + (-6) = -21 \] ### Step 4: Rewrite the middle term using the two numbers Now we can rewrite the expression \( y^2 - 21y + 90 \) as: \[ y^2 - 15y - 6y + 90 \] ### Step 5: Factor by grouping Next, we group the terms: \[ (y^2 - 15y) + (-6y + 90) \] Now, we factor out the common factors in each group: \[ y(y - 15) - 6(y - 15) \] ### Step 6: Factor out the common binomial Now we can factor out the common binomial \( (y - 15) \): \[ (y - 15)(y - 6) \] ### Final Result Thus, the factorised form of the expression \( y^2 - 21y + 90 \) is: \[ (y - 15)(y - 6) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 7y^(2) - 19y -6

Factorise: y ^(2) + y-72

Factorise: y ^(2) + 19y + 60

Factorise: 3y ^(2) + 14y + 8

Factorise: y ^(2) + 10y +24

Factorise: y ^(2)- 6y - 135

Factorise: y^(2)-121

Factorise the y ^(2)- 2y - 15

Factorise: y ^(2) + 7y - 144

Factorise: x ^(2) - xy + y -x