Home
Class 8
MATHS
Factorise: x ^(2) + x - 132...

Factorise:
`x ^(2) + x - 132 `

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^2 + x - 132 \), we will follow these steps: ### Step 1: Identify the coefficients The expression is in the form \( ax^2 + bx + c \), where: - \( a = 1 \) (coefficient of \( x^2 \)) - \( b = 1 \) (coefficient of \( x \)) - \( c = -132 \) (constant term) ### Step 2: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \( a \cdot c = 1 \cdot (-132) = -132 \) and add up to \( b = 1 \). ### Step 3: List the factor pairs of \(-132\) The factor pairs of \(-132\) that we can consider are: - \( (1, -132) \) - \( (-1, 132) \) - \( (2, -66) \) - \( (-2, 66) \) - \( (3, -44) \) - \( (-3, 44) \) - \( (4, -33) \) - \( (-4, 33) \) - \( (6, -22) \) - \( (-6, 22) \) - \( (11, -12) \) - \( (-11, 12) \) ### Step 4: Identify the correct pair Among these pairs, we need to find the pair that adds up to \( 1 \). The pair \( (12, -11) \) works because: - \( 12 + (-11) = 1 \) - \( 12 \times (-11) = -132 \) ### Step 5: Rewrite the middle term Now, we can rewrite the expression \( x^2 + x - 132 \) using the numbers we found: \[ x^2 + 12x - 11x - 132 \] ### Step 6: Group the terms Next, we group the terms: \[ (x^2 + 12x) + (-11x - 132) \] ### Step 7: Factor by grouping Now we factor out the common factors from each group: \[ x(x + 12) - 11(x + 12) \] ### Step 8: Factor out the common binomial Now we can factor out the common binomial \( (x + 12) \): \[ (x - 11)(x + 12) \] ### Final Answer Thus, the factorised form of \( x^2 + x - 132 \) is: \[ (x - 11)(x + 12) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: x ^(2) + 5x - 104

Factorise: 2x ^(2) + x - 45

Factorise: 64-x ^(2)

Factorise: 3x ^(2) - 4x -4

Factorise: x ^(2) - 4x -12

Factorise: x ^(2) - 5x - 24

Factorise: 6x ^(2) - 5x -6

Factorise: x ^(2) - 7x- 30

Factorise: x^(2)-36

Factorise: x^(2) + x-56