Home
Class 8
MATHS
Factorise: y ^(2) + 7y - 144...

Factorise:
`y ^(2) + 7y - 144`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( y^2 + 7y - 144 \), we can follow these steps: ### Step 1: Identify the coefficients The expression is in the form \( ay^2 + by + c \), where: - \( a = 1 \) (coefficient of \( y^2 \)) - \( b = 7 \) (coefficient of \( y \)) - \( c = -144 \) (constant term) ### Step 2: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \( a \cdot c = 1 \cdot (-144) = -144 \) and add to \( b = 7 \). After checking the pairs of factors of \(-144\), we find: - The numbers \( 16 \) and \(-9\) satisfy the conditions: - \( 16 \times (-9) = -144 \) - \( 16 + (-9) = 7 \) ### Step 3: Rewrite the middle term using the two numbers We can rewrite the expression \( y^2 + 7y - 144 \) as: \[ y^2 + 16y - 9y - 144 \] ### Step 4: Group the terms Now, we will group the terms: \[ (y^2 + 16y) + (-9y - 144) \] ### Step 5: Factor out the common terms in each group From the first group \( (y^2 + 16y) \), we can factor out \( y \): \[ y(y + 16) \] From the second group \( (-9y - 144) \), we can factor out \(-9\): \[ -9(y + 16) \] ### Step 6: Combine the factored groups Now we can combine the factored terms: \[ y(y + 16) - 9(y + 16) \] Notice that \( (y + 16) \) is common in both terms, so we can factor it out: \[ (y + 16)(y - 9) \] ### Final Answer Thus, the factorised form of \( y^2 + 7y - 144 \) is: \[ (y - 9)(y + 16) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: y ^(2) + y-72

Factorise: 7y^(2) - 19y -6

Factorise: y ^(2)- 6y - 135

Factorise the y ^(2) + 7y + 12

Factorise: y^(2)-121

Factorise the y ^(2) + 4y - 21

Factorise the y ^(2)- 2y - 15

Factorise: y ^(2) - 21y + 90

Factorise: 3y ^(2) + 14y + 8

Factorise: y ^(2) + 19y + 60