Home
Class 8
MATHS
Factorise: z ^(2) +19z-150...

Factorise:
`z ^(2) +19z-150`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( z^2 + 19z - 150 \), we can follow these steps: ### Step 1: Identify coefficients The expression is in the standard quadratic form \( az^2 + bz + c \), where: - \( a = 1 \) (coefficient of \( z^2 \)) - \( b = 19 \) (coefficient of \( z \)) - \( c = -150 \) (constant term) ### Step 2: Multiply \( a \) and \( c \) We need to multiply \( a \) and \( c \): \[ 1 \times (-150) = -150 \] ### Step 3: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \(-150\) and add up to \(19\). After checking the pairs of factors of \(-150\), we find: - The numbers \(25\) and \(-6\) satisfy the conditions: - \(25 \times (-6) = -150\) - \(25 + (-6) = 19\) ### Step 4: Rewrite the middle term Now we can rewrite the expression by splitting the middle term using the numbers found: \[ z^2 + 25z - 6z - 150 \] ### Step 5: Group the terms Next, we group the terms: \[ (z^2 + 25z) + (-6z - 150) \] ### Step 6: Factor out the common terms Now we can factor out the common factors from each group: 1. From the first group \(z^2 + 25z\), we can factor out \(z\): \[ z(z + 25) \] 2. From the second group \(-6z - 150\), we can factor out \(-6\): \[ -6(z + 25) \] ### Step 7: Combine the factored terms Now we can combine the factored terms: \[ z(z + 25) - 6(z + 25) \] This can be written as: \[ (z - 6)(z + 25) \] ### Final Answer Thus, the factorised form of \( z^2 + 19z - 150 \) is: \[ (z - 6)(z + 25) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: z ^(2) - 12z- 45

Factorise: z ^(2) + 12z+27

Factorise: 7y^(2) - 19y -6

Factorise: 3z ^(2) - 10z + 8

Factorise: y ^(2) + 19y + 60

Factorise: 7x ^(2) - 19 x -6

(a) Factorise : x^(2) - (z-5)x - 5z (b) Factorise : x^(2) + x - y + y^(2) - 2xy

Factorise: 3 + 23z - 8z^(2)

Factorise: (5x - y) ^(3) + (y - 4z) ^(3) + (4z - 5x) ^(3)

Factorise : (x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)