Home
Class 8
MATHS
Factorise: y ^(2)- 6y - 135...

Factorise:
`y ^(2)- 6y - 135`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( y^2 - 6y - 135 \), we will follow these steps: ### Step 1: Identify the coefficients The expression is in the standard quadratic form \( ay^2 + by + c \), where: - \( a = 1 \) (coefficient of \( y^2 \)) - \( b = -6 \) (coefficient of \( y \)) - \( c = -135 \) (constant term) ### Step 2: Multiply \( a \) and \( c \) We need to multiply \( a \) and \( c \): \[ a \cdot c = 1 \cdot (-135) = -135 \] ### Step 3: Find two numbers that multiply to \( ac \) and add to \( b \) We are looking for two numbers that multiply to \(-135\) and add up to \(-6\). After testing pairs of factors of \(-135\), we find: - The pair \( 9 \) and \(-15\) works because: \[ 9 \cdot (-15) = -135 \quad \text{and} \quad 9 + (-15) = -6 \] ### Step 4: Rewrite the middle term Using the numbers \( 9 \) and \(-15\), we can rewrite the expression: \[ y^2 - 6y - 135 = y^2 + 9y - 15y - 135 \] ### Step 5: Group the terms Now, we group the terms: \[ (y^2 + 9y) + (-15y - 135) \] ### Step 6: Factor by grouping Now, we factor out the common factors in each group: 1. From the first group \( (y^2 + 9y) \), we can factor out \( y \): \[ y(y + 9) \] 2. From the second group \( (-15y - 135) \), we can factor out \(-15\): \[ -15(y + 9) \] ### Step 7: Combine the factors Now, we can combine the factored groups: \[ y(y + 9) - 15(y + 9) = (y - 15)(y + 9) \] ### Final Answer Thus, the factorised form of \( y^2 - 6y - 135 \) is: \[ (y - 15)(y + 9) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise the y ^(2)- 2y - 15

Factorise: y^(2)-121

Factorise: y ^(2) + 7y - 144

Factorise: 7y^(2) - 19y -6

Factorise: y ^(2) + y-72

Factorise: y ^(2) - 21y + 90

Factorise the y ^(2) + 4y - 21

Factorise: y ^(2) + 19y + 60

Factorise: 3y ^(2) + 14y + 8

Factorise: y ^(2) + 10y +24