Home
Class 8
MATHS
Factorise: z ^(2) - 12z- 45...

Factorise:
`z ^(2) - 12z- 45`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( z^2 - 12z - 45 \), we will follow these steps: ### Step 1: Identify the coefficients The given expression is \( z^2 - 12z - 45 \). Here, the coefficient of \( z^2 \) is 1, the coefficient of \( z \) is -12, and the constant term is -45. ### Step 2: Multiply the coefficient of \( z^2 \) by the constant term We multiply the coefficient of \( z^2 \) (which is 1) by the constant term (-45): \[ 1 \times (-45) = -45 \] ### Step 3: Find two numbers that multiply to -45 and add to -12 We need to find two numbers that multiply to -45 and add up to -12. The two numbers that satisfy these conditions are -15 and 3: \[ -15 \times 3 = -45 \quad \text{and} \quad -15 + 3 = -12 \] ### Step 4: Rewrite the middle term using the two numbers We can rewrite the expression \( z^2 - 12z - 45 \) as: \[ z^2 - 15z + 3z - 45 \] ### Step 5: Factor by grouping Now, we will group the terms: \[ (z^2 - 15z) + (3z - 45) \] Next, we factor out the common factors from each group: \[ z(z - 15) + 3(z - 15) \] ### Step 6: Factor out the common binomial Now, we can factor out the common binomial \( (z - 15) \): \[ (z - 15)(z + 3) \] ### Final Result Thus, the factorised form of \( z^2 - 12z - 45 \) is: \[ (z - 15)(z + 3) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: z ^(2) + 12z+27

Factorise: 3z ^(2) - 10z + 8

Factorise: z ^(2) +19z-150

Factorise: 2x ^(2) + x - 45

(a) Factorise : x^(2) - (z-5)x - 5z (b) Factorise : x^(2) + x - y + y^(2) - 2xy

Factorise : (x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)

Factorise: 3 + 23z - 8z^(2)

Factorise y^(2) + 2xy + 2 xz - z^(2) .

Factorise x^(2)-(y-z)^(2) .

Factorise: (5x - y) ^(3) + (y - 4z) ^(3) + (4z - 5x) ^(3)