Home
Class 8
MATHS
Factorise: 3 + 23z - 8z^(2)...

Factorise:
`3 + 23z - 8z^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(3 + 23z - 8z^2\), we can follow these steps: ### Step 1: Rearrange the Expression Rearrange the expression in standard form: \[ -8z^2 + 23z + 3 \] ### Step 2: Factor Out the Negative Sign Factor out the negative sign from the expression: \[ -(8z^2 - 23z - 3) \] ### Step 3: Identify Coefficients Identify the coefficients for the quadratic \(ax^2 + bx + c\): - \(a = 8\) - \(b = -23\) - \(c = -3\) ### Step 4: Calculate the Product \(ac\) Calculate the product \(ac\): \[ ac = 8 \times (-3) = -24 \] ### Step 5: Find Two Numbers that Multiply to \(ac\) and Add to \(b\) We need to find two numbers that multiply to \(-24\) and add to \(-23\). The numbers are \(-24\) and \(1\): - \(-24 + 1 = -23\) - \(-24 \times 1 = -24\) ### Step 6: Split the Middle Term Rewrite the expression by splitting the middle term using the numbers found: \[ -8z^2 - 24z + z - 3 \] ### Step 7: Group the Terms Group the terms into two pairs: \[ (-8z^2 - 24z) + (z - 3) \] ### Step 8: Factor by Grouping Factor out the common factors from each group: \[ -8z(z + 3) + 1(z - 3) \] ### Step 9: Factor Out the Common Binomial Now, we can factor out the common binomial \((z + 3)\): \[ -(8z + 1)(z - 3) \] ### Final Result Thus, the factorised form of the expression \(3 + 23z - 8z^2\) is: \[ -(8z + 1)(z - 3) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: 3z ^(2) - 10z + 8

Factorise: z ^(2) - 12z- 45

Factorise: z ^(2) + 12z+27

(a) Factorise : x^(2) - (z-5)x - 5z (b) Factorise : x^(2) + x - y + y^(2) - 2xy

Factorise: (5x - y) ^(3) + (y - 4z) ^(3) + (4z - 5x) ^(3)

Factorise y^(2) + 2xy + 2 xz - z^(2) .

Factorise: z ^(2) +19z-150

Factorise (x+y)^(3)-27z^(3)

Factorise x^(2)-(y-z)^(2) .

Factorise : 27x^(3)+8y^(3)+8z^(3)-36xyz