Home
Class 8
MATHS
a ^(2) + bc + ab + ac= ?...

`a ^(2) + bc + ab + ac=` ?

A

`(a+ b) (a+c)`

B

`(a+b) (b +c)`

C

`(b +c) (c+a)`

D

`a(a+b+c)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( a^2 + ab + ac + bc \), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ a^2 + ab + ac + bc \] ### Step 2: Rearrange the terms We can rearrange the terms to group them in a way that makes factoring easier: \[ a^2 + ab + ac + bc = a^2 + ab + ac + bc \] ### Step 3: Group the terms Now, we will group the terms: \[ (a^2 + ab) + (ac + bc) \] ### Step 4: Factor out the common terms Now we will factor out the common factors from each group: - From the first group \( a^2 + ab \), we can factor out \( a \): \[ a(a + b) \] - From the second group \( ac + bc \), we can factor out \( c \): \[ c(a + b) \] ### Step 5: Combine the factored terms Now we can combine the two factored expressions: \[ a(a + b) + c(a + b) \] ### Step 6: Factor out the common binomial Now we see that \( (a + b) \) is common in both terms, so we can factor it out: \[ (a + b)(a + c) \] ### Final Answer Thus, the factorized form of the expression \( a^2 + ab + ac + bc \) is: \[ (a + b)(a + c) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Find the square root of : 4 a ^(2) + 9b ^(2) + c ^(2) - 12 ab + 6 bc - 4 ac

| [-bc, b ^ (2) + bc, c ^ (2) + bca ^ (2) + ac, -ac, c ^ (2) + aca ^ (2) + ab, b ^ (2) + ab, -ab (ab + bc + ac), is = 64. then

If a = 24, b = 26, c = 28 , then the value of a^2 + b^2 + c^2 - ab - bc - ac will be

Subtract : 2 ab + 5 bc - 7 ac from 5 ab - 2 bc - 2 ac + 10 abc

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then

Factorise: 6ab - b ^(2) + 12 ac - 2bc

" If \begin{vmatrix} -a^2 & ab & ac\\ ab & -b^2 & bc\\ ac & bc & -c^2 \end{vmatrix}=1 then the value of a^(2)b^(2)c^(2) is

Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab, -ab]|=(ab+bc+ca)^2