Home
Class 8
MATHS
pq ^(2) + q (p -1) -1= ?...

`pq ^(2) + q (p -1) -1=` ?

A

`(pq+1) (q-1)`

B

`p (1 +1)(q-1)`

C

`q(p-1)( q+1)`

D

`(pq-1) (q+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( pq^2 + q(p - 1) - 1 \), we will follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ pq^2 + q(p - 1) - 1 \] ### Step 2: Distribute the term \( q(p - 1) \) Distributing \( q \) in the term \( q(p - 1) \): \[ pq^2 + qp - q - 1 \] ### Step 3: Group the terms Now, we can group the terms: \[ pq^2 + qp - q - 1 = pq^2 + qp - (q + 1) \] ### Step 4: Factor out common terms Notice that \( pq^2 + qp \) has a common factor of \( q \): \[ q(pq + p) - (q + 1) \] ### Step 5: Factor further if possible We can see if we can factor \( q(p + 1) - 1 \): \[ q(p + 1) - 1 \] ### Step 6: Final expression Thus, the expression can be factored as: \[ q(p + 1) - 1 \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Verify that (p-q) ( p ^(2) + pq + q ^(2)) = p ^(3) - q ^(3)

If 2010 is a root of x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0 and 2010 harmonic mean are inserted between p and q then the value of (h_(1) - h_(2010))/(pq(p - q)) is

(p-q)^(2)+4pq

If (p + 2) (2q - 1) = 2pq - 10 and (p - 2) (2q - 1) = 2pq - 10, then what is pq equal to ?