Home
Class 12
MATHS
If matrix A is given by A=[6 11 2 4] , t...

If matrix `A` is given by `A=[6 11 2 4]` , then the determinant of `A^(2005)-6A^(2004)` is `2^(2006)` b. `(-11)2^(2005)` c. `-2^(2005)` d. `(-9)2^(2004)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Matrix A is given by A=[[6,11],[2,4]] then the determinant of A^(2015)-6A^(2014) is

If matrix A is given by A=[[6,112,4]] then determinant of A^(2005)-6A^(2004) is

(2005)^(2)-(1995)^(2)= ?

int(cos ec^(2)x-2005)/(cos^(2005)x)*dx

((x-4)^(2005)*(x+8)^(2008)*(x+1))/(x^(2006)(x-2)^(3)(x+3)^(5)*(x-6)(x+9)^(2010))<0

The last digit of (1!+2!++2005!)^(500) is (A) 9(B)2(C)7(D)1

((x-4)^(2005)*(x+8)^(2008)(x+1))/(x^(2006)(x-2)^(3)*(x+3)^(5)0(x-6)(x+9)^(2010))<=0

(4x^(2)-11x+6)/(16x^(2)-9)

The digit at the unit place in the number 19^(2005)+11^(2005)-9^(2005) is :