Home
Class 11
MATHS
FInd 'x' satisfying the equation 4^(l...

FInd 'x' satisfying the equation `4^(log_10 x+1)-6^(log_10 x)-2. 3^(log10)x^2+2=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Find 'x' satisfying the equation 4^(log_(10) x + 1) - 6^(log_(10)x) - 2.3 ^(log_(10)x^(2) + 2) = 0 .

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x

Solve the following equation. 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has