Home
Class 12
MATHS
If int0^1(e^(-x)dx)/(1+e^x)=(log)e(1+e)+...

If `int_0^1(e^(-x)dx)/(1+e^x)=(log)_e(1+e)+k` , then find the value of k.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^1 e^-x/(1+e^x)dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int(ln(e^(x)+1))/(e^(x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

If I_(K)=int_(1)^(e)(ln x)^(k)dx(k in I^(+))dx(k in I^(+)) then find the value of I_(4)

int log(e^(x)+1)(e^(x))dx

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is:

int_(1)^(e)(e^(x))/(x)(1+x log x)dx