Home
Class 12
MATHS
lim(x->0) 2^(1//|x|)=...

`lim_(x->0) 2^(1//|x|)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_( x -> 0 ) ( 2^(-1/x^2)) is ( a ) 2 ( b ) 1/2 ( c ) 0 ( d ) does not exist

Evaluate: lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

lim_(x->0)log(1+2x)/x

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

lim_(x->0)(1/(x^2)-1/(tan^2x))

The value of lim_(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))

lim_(x->0)(e^(2x)-1)/(3x)

Evaluate: lim_(x->0)(1/(x^2)-1/(sin^2x))