Home
Class 12
MATHS
If An=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,...

If `A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx` for `n inN `, Then (A) `A_(n+1)=A_n` (B) `B_(n+1)=B_n` (C) `A_(n+1)-A_n=B_(n+1)` (D) `B_(n+1)-B_n=A_(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A_n=int_0^(pi/2)(sin(2n-1)x)/(s in x)"dx";"B"_"n"=int_0^("pi"/2)(("s i n n x")/(s in x))^2"dx";"f o rn" in "N","t h e n" A_(n+1)-A_n b. B_(n+1)-B_n c. A_(n+1)-A_n=B_(n+1) d. B_(n+1)-B_n=A_(n+1)

A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx;B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx; for n in N then A_(n+1)=A_(n)( b) B_(n+1)=B_(n)A_(n+1)-A_(n)=B_(n+1)(d)B_(n+1)-B=A_(n+1)

If quad A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx;B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx; for n in N, then

If I_n=int_0^(pi/2) (sin(2n-1)x)/sinx)dx , and a_n=int_0^(pi/2) ((sinntheta)/sintheta)^2 d theta , then a_(n+1)-a_n= (A) I_n (B) 2I_n (C) I_(n+1) (D) 0

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

If a_n= int_0^pi(sin(2n-1)x)/sinx dx, then a_1a_2a_3 are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

int_0^(2npi) {|sinx|-|1/2sinx|}dx= (A) n (B) 2n (C) -2n (D) 1/2

Given that a_(n)=int_(0)^(pi) (sin^(2){(n+1)x})/(sin2x)dx What is a_(n-1)-a_(n-4) equal to ?

If alpha, beta arethe roots of the equation x^2-ax+b=0 and A_n=alpha^n+beta^n then which of the following is true? (A) A_(n+1)=aA_n+bA_(n-1) (B) A_(n+1)=bA_n+aA_(n-1) (C) A_(n+1)=aA_n-bA_(n-1) (D) A_(n+1)=bA_n+-aA_(n-1)