Home
Class 12
MATHS
If f(x)=int(x^2)^(x^2+1)e^-t^2dt , then ...

If `f(x)=int_(x^2)^(x^2+1)e^-t^2dt` , then `f(x)` increases in `(0,2)` (b) no value of `x` `(0,oo)` (d) `(-oo,0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= int_(x^2)^(x^(2) +4) e^(-t^(2) ) dt , then the function f(x) increases in

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

f(x)=int(2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2))))dx then fis (A) increasing in (0,pi) and decreasing in (-oo,0)(B) increasing in (-oo,0) and decreasing in (0,oo)(C) increasing in (-oo,oo) and (D) decreasing in (-oo,oo)

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to