Home
Class 12
MATHS
If I(m,n)=int0^1 t^m(1+t)^n.dt, then the...

If `I(m,n)=int_0^1 t^m(1+t)^n.dt`, then the expression for I(m,n) in terms of I(m+1,n-1) is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If (a^(m))^(n)=a^(m^(n)) , then express 'm' in the terms of n is (agt0, ane0, mgt1, ngt1)

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m,n in I,m,n>=0),th epsilonI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m-n))dxI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n))/((1+x)^(m+n))dx

If I_(m,n)=int cos^(m)theta*cos n theta and dd;theta, prove that t(m+n)I_(m,n)-mI_(m-1,n-1)=cos^(m)theta*sin n theta

if I_(m,n)=int(x^(m))/((log x)^(n))dx, then (m+1)I_(m,n)-nI_(m,n+1) is

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)