Home
Class 12
MATHS
tan^(-1)[(cosx)/(1+sinx)] is equal to p...

`tan^(-1)[(cosx)/(1+sinx)]` is equal to `pi/4-x/2,forx in (-pi/2,(3pi)/2)` `pi/4-x/2,forx in (-pi/2,pi/2)` `pi/4-x/2,forx in (-pi/2,pi/2)` `pi/4-x/2,forx in (-(3pi)/2,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)[(cosx)/(1+sinx)] is equal to pi/4-x/2,when (a) x in (-pi/2,(3pi)/2) (b) x in (-pi/2,pi/2) (c) x in (-pi/2,pi) (d) x in (-(3pi)/2,pi/2)

tan^(-1)[(cos x)/(1+sin x)] is equal to (pi)/(4)-(x)/(2), for x in(-(pi)/(2),(3 pi)/(2))(pi)/(4)-(x)/(2), for x in(-(pi)/(2),(pi)/(2))(pi)/(4)-(x)/(2), for x in(-(pi)/(2),(pi)/(2))(pi)/(4)-(x)/(2), for x in(-(3 pi)/(2),(pi)/(2))

Show that tan^-1((cosx)/(1 + sin x)) = pi/4 - x/2 , where x in (-pi/2 , pi/2)

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx),forx in (pi/4,pi/2) (b) cosx+sinx ,forx in (0,pi/4) (c) -(cosx+sinx),forx in (0,pi/4) (d) cosx-sinx ,forx in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)