Home
Class 12
MATHS
Let T >0 be a fixed real number. Suppos...

Let `T >0` be a fixed real number. Suppose `f` is continuous function such that for all `x in R ,f(x+T)=f(x)dot` If `I=int_0^Tf(x)dx ,` then the value of `int_3^(3+3T)f(2x)dx` is (a)`3/2I` (b) `2I` (c) `3I` (d) `6I`

A

`3/2I`

B

`2I`

C

`3I`

D

`6I`

Text Solution

Verified by Experts

Let `I_(1)=int_(3)^(3+3T) f(2x)dx`
Put `2x=y` so that `I_(1)=1/2int_(6)^(6+6T)f(y)dy`
`=1/2 6int_(0)^(T)dy` [ `:' f(x)` has period `T`]
`=3I`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let Tgt0 be a fixed real number. Suppose f is a cintinuous function such that f(x+T) = f(x) "for all" x in R . If I=int_(0)^(T) f(x)dx, then the vlaue of int_(3)^(3+3T) f(2x)dx is

I=int_(0)^(T)f(x)dx, then show that int_(3)^(3+3T)f(2x)dx=3I

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to

Let f(x) is a continuous function If f(1)=1 and int_(0)^(x)t.f(2x-t)dt=(1)/(2)tan^(-1)(x^(2)) then the value of a? 4int_(1)^(2)f(x)dx is equal to

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .