Home
Class 12
MATHS
Let f(x)=int1^xsqrt(2-t^2)dtdot Then th...

Let `f(x)=int_1^xsqrt(2-t^2)dtdot` Then the real roots of the equation `x^2-f^(prime)(x)=0` are (a)`+-1` (b) `+-1/(sqrt(2))` (c)`+-1/2` (d) 0 and 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=\ int_1^xsqrt(2-t^2)dtdot Then the real roots of the equatin x^2-f^(prime)(x)=0 are +-1 b. +-1/(sqrt(2)) c. +-1/2 d. 0 and 1

Let f(x)=int_(1)^(x)sqrt(2-t^(2))dt .Then the real roots of the equation,x^(2)-f'(x)=0 are: a.+-1 b.+-(1)/(sqrt(2))c*+-(1)/(2)d.081

Let f(x)-2x-x^(2),x<=1 then the roots of the equation f(x)=f^(-1)(x) is

Number of roots of the equation 2sqrt(2x+1)=2x-1 is 0(b)1(c)2(d)3

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt(1-x))=1 is A.0 B.1 c.2 D.3

Number of real roots of equation f(x)=0 is (A) 0 (B) 1 (C) 2 (D) none of these