Home
Class 12
MATHS
" If "A=(1)/(3)|[1,2,2],[2,1,-2],[-2,2,-...

" If "A=(1)/(3)|[1,2,2],[2,1,-2],[-2,2,-1]|" ,then verify that "AA^(T)=A^(T)A=L

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=(1)/(3){:[(-1,2,-2),(-2,1,2),(2,2,1)] show that "AA"^(T)=I .

If A=[[2,-1,2],[1,3,-4]],B=[[1,-2],[-3,0],[5,4]] then verify that (AB)^(T)=B^(T)A^(T)

" If "A=[[1,2],[3,4],[5,6]],B=[[2,3,7],[1,0,3]]" verify that "(AB)^(T)=B^(T)A^(T)

If A =[[1,-2,2],[3,1,-1]] B[[2,4],[1,2],[3,-1]] "verify" "that" (AB)^T=B^TA^T.

If A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):}) , show that "AA"^(T)=I_(3) .

If A=[[1,3],[2,4]] and B=[[2,-1],[3,2]], verify that (AB)^(T)=B^(T)A^(T)

If A=[(2,-1,2),(1,3,-4)] and B=[(1,-2),(-3,0),(5,4)] then verify that (AB)^(T)=B^(T)A^(T)

If A=[(1,2),(2,3),(3,4)]and B=[(2,3,0),(1,2,3)], then verify that (AB)^T=B^TA^T .

If A=[(1,2,5),(2,3,1),(-1,1,1)] verify that A^(-1)A="AA"^(-1)=I