Home
Class 12
MATHS
If f(x) is integrable over [1,], then in...

If `f(x)` is integrable over `[1,],` then `int_1^2f(x)dx` is equal to `("lim")_(nvecoo)1/nsum_(r=1)^nf(r/n)` `("lim")_(nvecoo)1/nsum_(r=n+1)^(2n)f(r/n)` `("lim")_(nvecoo)1/nsum_(r=1)^nf((r+n)/n)` `("lim")_(nvecoo)1/nsum_(r=1)^(2n)f(r/n)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is

sum_(r=1)^(n)r^(3)=f(n) then sum_(r=1)^(n)(2r-1)^(3) is equal to

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals