Home
Class 12
MATHS
If A=[1tanx-tanx1] , show that A^T\ A^(-...

If `A=[1tanx-tanx1]` , show that `A^T\ A^(-1)=[cos2x-sin2xsin2xcos2x]` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[1tan x-tan x1], show that A^(T)A^(-1)=[cos2x-sin2x sin2x cos2x]

If A=[[1,tan x-tan x,1]], show that A^(T)A^(-1)=[[cos2x,-sin2xsin2x,cos2x]]

If A=[(1,tanx),(-tanx, 1)], " show that " A' A^(-1)=[(cos 2x,-sin 2x),(sin 2x, cos 2x)] .

If y = {(1-tanx)/(1+tanx)} , show that (dy)/(dx) = (-2)/((1+sin2x)) .

If A= [{:( 1,-tanx ),( tanx ,1):}] then the value of [A^(T) A^(-1) ] is

If y=(1-tanx)/(1+tanx) , prove that (dy)/(dx)=(-2)/(1+sin2x) .

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

Prove that: (sin5x-2sin3x+sinx)/(cos5x-cos x)=tanx

(1)/(sin x.cos^(2)x)