Home
Class 12
MATHS
IfI=int(dx)/((2a x+x^2)^(3/2)),then I is...

`IfI=int(dx)/((2a x+x^2)^(3/2))`,then `I` is equal to`` (a)`-(x+a)/(sqrt(2a x+x^2))+c` (b) `-1/a(x+a)/(sqrt(2a x+x^2))+c` (c)`-1/(a^2)(x+a)/(sqrt(2a x+x^2))+c` (d) `-1/(a^3)(x+a)/(sqrt(2a x+x^3))+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

IfI=int(dx)/((2ax+x^(2))^((3)/(2))), then I is equal to (a) -(x+a)/(sqrt(2ax+x^(2)))+c(b)-(1)/(a)(x+a)/(sqrt(2ax+x^(2)))+c(c)-(1)/(a^(2))(x+a)/(sqrt(2ax+x^(2)))+c(d)-(1)/(a^(3))(x+a)/(sqrt(2ax+x^(3)))+c

IfI=int(dx)/(x^3sqrt(x^2-1)) , the equals

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(1)/(sqrt(sin^(3)x cos x))dx is equal to :(A)-(2)/(sqrt(cos x))+c(B)(2)/(sqrt(tan x))+c(C)(2)/(sqrt(cot x))+c(D)(2)/(sqrt(tan x))+c

int sqrt (1 + x ^(2)). x dx = (1)/(3) (1 + x ^(2)) ^((3)/(2)) + c

int(dx)/((1+sqrt(x))sqrt((x-x^2))) is equal to (a) (1+sqrt(x))/((1-x)^2)+c (b) (1+sqrt(x))/((1+x)^2)+c (c) (1-sqrt(x))/((1-x)^2)+c (d) (2(sqrt(x)-1))/(sqrt((1-x)))+c

IfI=int(dx)/(x^(3)sqrt(x^(2)-1)), then Iequals a.(1)/(2)((sqrt(x^(2)-1))/(x^(3))+tan^(-1)sqrt(x^(2)-1))+C b.(1)/(2)((sqrt(x^(2)-1))/(x^(2))+x tan^(-1)sqrt(x^(2)-1))+Cc(1)/(2)((sqrt(x^(2)-1))/(x^(2))+tan^(-1)sqrt(x^(2)-1))+Cd(1)/(2)((sqrt(x^(2)-1))/(x^(2))+tan^(-1)sqrt(x^(2)-1))+C

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c