Home
Class 12
MATHS
" A function "f(x)" satisfies the relati...

" A function "f(x)" satisfies the relation "f(x)=e^(x)+int_(0)^(1)e^(t)f(t)dt" .Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is

A function f(x) which satisfies the relation f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

A function f(x) satisfies f(x)=sin x+int_(0)^(x)f'(t)(2sin t-sin^(2)t)dt is