Home
Class 12
PHYSICS
A radioactive nucleus X decays to a nucl...

A radioactive nucleus X decays to a nucleus Y with a decay constant `lambda_X=0.1s^-1`, Y further decays to a stable nucleus Z with a decay constant
`lambda_Y=1//30s^-1`. Initially, there are only X nuclei and their number is `N _0=10^20`. Set up the rate equations for the populations of X, Y and Z. The population of Y nucleus as a function of time is given by `N_Y(t)={N _0lambda_X//(lambda_X-lambda_Y)}[exp(-lambda_Yt)-exp(-lambda_Xt)]`.
Find the time at which `N_Y` is maximum and determine the population X and Z at that instant.

Promotional Banner

Similar Questions

Explore conceptually related problems

A radioactive nucleus X decay to a nucleus Y with a decay with a decay Concept lambda _(x) = 0.1s^(-1) , gamma further decay to a stable nucleus Z with a decay constant lambda_(y) = 1//30 s^(-1) initialy, there are only X nuclei and their number is N_(0) = 10^(20) . Set up the rate equations for the population of X , Y and Z The population of Y nucleus as a function of time is given by N_(y) (1) = N_(0) lambda_(x)l(lambda_(x) - lambda_(y))( (exp(- lambda_(y)t)) Find the time at which N_(y) is maximum and determine the populations X and Z at that instant.

A radioactive nucleus X decay to a nucleus Y with a decay with a decay Concept lambda _(x) = 0.1s^(-1) , gamma further decay to a stable nucleus Z with a decay constant lambda_(y) = 1//30 s^(-1) initialy, there are only X nuclei and their number is N_(0) = 10^(20) set up the rate equations for the population of X^9) Y and Z The population of Y nucleus as a function of time is givenby N_(y) (1) = N_(0) lambda_(x)l(lambda_(x) - lambda_(y))) (exp(- lambda_(y)1)) Find the time at which N_(y) is maximum and determine the populastion X and Y at that instant.

A radioactive element A decays with a decay constant lambda . The fraction of nuclei that decayed at any time t , if the initial nucle are N_(0) is given by:

Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant lambda and half-life T_(1//3) . At the time t=0 , there are N_(0) nuclei of the element X. The number N_(Y) of nuclei of Y at time t is .

Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant lambda and half-life T_(1//3) . At the time t=0 , there are N_(0) nuclei of the element X. The number N_(Y) of nuclei of Y at time t is .

Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant lambda and half-life T_(1//3) . At the time t=0 , there are N_(0) nuclei of the element X . The number N_(Y) of nuclei of Y at t=T_(1//2) is.

Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant lambda and half-life T_(1//2) . At the time t=0 , there are N_(0) nuclei of the element X . The number N_(X) of nuclei of X at time t=T_(1//2) is .

Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant lambda and half-life T_(1//3) . At the time t=0 , there are N_(0) nuclei of the element X . The number N_(X) of nuclei of X at time t=T_(1//2) is .