Home
Class 12
MATHS
" Derivative of "(sqrt(1+x^(2))+sqrt(1-x...

" Derivative of "(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))" w.r.t."sqrt(1-x^(4))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))) w.r.t. cos^(-1)x^(2) .

Differentiate tan^-1{( sqrt (1+x^2) +sqrt (1-x^2))/ (sqrt(1+x^2)-sqrt(1-x^2))} w.r.t.x

5^(sqrt(x^(2)+1))+(sqrt(x^(2)+1))^(5) w.r.t.x

Differentiatie tan^-1((sqrt(1+x^2) - sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) w.r.t. sin^-1((2x)/(1+x^2))

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

Differentiate w.r.t 'x' f(x) = (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1))

Derivative of sec^(-1) (1/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is